สมบัติการบวกในระบบจำนวนจริง
กำหนด a, b, c เป็นจำนวนจริงใดๆ
กำหนด a, b, c เป็นจำนวนจริงใดๆ
1. สมบัติปิดการบวก a + b เป็นจำนวนจริง
2. สมบัติการสลับที่ของการบวก a + b = b + c
3. สมบัติการเปลี่ยนกลุ่มการบวก a + ( b + c) = ( a + b ) + c
4. เอกลักษณ์การบวก 0 + a = a = a + 0
นั่นคือ ในระบบจำนวนจริงจะมี 0 เป็นเอกลักษณ์การบวก
5. อินเวอร์สการบวก a + ( -a ) = 0 = ( -a ) + a
นั่นคือ ในระบบจำนวนจริง จำนวน a จะมี -a เป็นอินเวอร์สของการบวก
สมบัติการคูณในระบบจำนวนจริง
กำหนด a, b, c เป็นจำนวนจริงใดๆ
1. สมบัติปิดการคูณ ab เป็นจำนวนจริง
2. สมบัติการสลับที่ของการคูณ ab = bc
3. สมบัติการเปลี่ยนกลุ่มการคูณ a(bc) = (ab)c
4. เอกลักษณ์การคูณ 1 · a = a = a · 1
นั่นคือ ในระบบจำนวนจริงจะมี 1 เป็นเอกลักษณ์การคูณ
5. อินเวอร์สการคูณ a · a-1 = 1 = a · a-1, a ≠ 0
นั่นคือ ในระบบจำนวนจริง จำนวน a จะมี a-1 เป็นอินเวอร์สของการคูณ
6. สมบัติการแจกแจง
a( b + c ) = ab + ac
( b + c )a = ba + ca
จากสมบัติของระบบจำนวนจริงที่ได้กล่าวไปแล้ว สามารถนำมาพิสูจน์เป็นทฤษฎีบทต่างๆได้ดังนี้
ทฤษฎีบทที่ 1 กฎการตัดออกสำหรับการบวก
เมื่อ a, b, c เป็นจำนวนจริงใดๆ
ถ้า a + c = b + c แล้ว a = b
ถ้า a + b = a + c แล้ว b = c
ทฤษฎีบทที่ 2 กฎการตัดออกสำหรับการคูณ
เมื่อ a, b, c เป็นจำนวนจริงใดๆ
ถ้า ac = bc และ c ≠ 0 แล้ว a = b
ถ้า ab = ac และ a ≠ 0 แล้ว b = c
ทฤษฎีบทที่ 3 เมื่อ a เป็นจำนวนจริงใดๆ
a · 0 = 0
0 · a = 0
ทฤษฎีบทที่ 4 เมื่อ a เป็นจำนวนจริงใดๆ
(-1)a = -a
a(-1) = -a
ทฤษฎีบทที่ 5 เมื่อ a, b เป็นจำนวนจริงใดๆ
ถ้า ab = 0 แล้ว a = 0 หรือ b = 0
ทฤษฎีบทที่ 6 เมื่อ a เป็นจำนวนจริงใดๆ
a(-b) = -ab
(-a)b = -ab
(-a)(-b) = ab
ไม่มีความคิดเห็น:
แสดงความคิดเห็น